Interval Analysis on Directed Acyclic Graphs for Global Optimization

HERMANN SCHICHL and ARNOLD NEUMAIER
Institut für Mathematik, Universität Wien, Nordbergstr. 15, A-1090 Wien, Austria (e-mail: Hermann.Schichl@esi.ac.at, Arnold.Neumaier@univie.ac.at; www: http://www.mat. univie.ac.at/~neum)

(Received 18 November 2003; accepted in revised form 16 January 2005)

Abstract

A directed acyclic graph (DAG) representation of optimization problems represents each variable, each operation, and each constraint in the problem formulation by a node of the DAG, with edges representing the flow of the computation. Using bounds on ranges of intermediate results, represented as weights on the nodes and a suitable mix of forward and backward evaluation, it is possible to give efficient implementations of interval evaluation and automatic differentiation. It is shown how to combine this with constraint propagation techniques to produce narrower interval derivatives and slopes than those provided by using only interval automatic differentiation preceded by constraint propagation. The implementation is based on earlier work by L.V. Kolev, (1997), Reliable Comput., 3, $83-93$ on optimal slopes and by C. Bliek, (1992), Computer Methods for Design Automation, PhD Thesis, Department of Ocean Engineering, Massachusetts Institute of Technology on backward slope evaluation. Care is taken to ensure that rounding errors are treated correctly. Interval techniques are presented for computing from the DAG useful redundant constraints, in particular linear underestimators for the objective function, a constraint, or a Lagrangian. The linear underestimators can be found either by slope computations, or by recursive backward underestimation. For sufficiently sparse problems the work is proportional to the number of operations in the calculation of the objective function (resp. the Lagrangian).

Mathematics Subject Classifications (2000). primary 65G40, secondary 90C26.
Key words: automatic differentiation, constraint propagation, directed acyclic graphs, global optimization, interval analysis, slope

1. Introduction

Deterministic algorithms for solving factorable global optimization problems [11, 20] usually use branch-and-bound like schemes [2, 12, 17, 24, 27]. The success of such a method heavily relies on the quality of the range estimates computed for the functions involved.
This paper discusses a new representation technique for global optimization problems using directed acyclic graphs (DAGs). Traditionally, DAGs have been used in automatic differentiation $[6,14]$ and in the theory of parallel computing [9]. We will show that the DAG representation of a global
optimization problem serves many purposes. In some global optimization algorithms [17] and constraint propagation engines (e.g., ILOG solver), the computational trees provided by the parsers of high-level programming language compilers (FORTRAN 90, C++) are used, in others the parsers of modelling languages like AMPL [13] or GAMS [8] provide the graph representation of the mathematical problem.
In Sections 2 and 3, we will introduce the special DAGs used in problem representation and talk about different interpretations and simplification, and about the difference to computational trees. Section 4 explains the basic evaluation algorithms for computing function values, ranges, derivatives, and slopes, using the DAG representation of a function.
One of the strengths of the DAG concept is that it is suitable both for efficient evaluation and for performing constraint propagation (CP). This method for solving constraint satisfaction problems (CSPs) and global optimization problems (GLOPs) was first developed in the discrete case [15] and later transferred to the continuous case $[7,10,16,28]$. The basics of constraint propagation on DAGs are outlined in Section 5.
The results of constraint propagation, especially the ranges of the inner nodes, can be used to improve the ranges of the standard evaluation methods for interval derivatives, and slopes. The principles are outlined in Section 6. For global optimization algorithms not only range estimates are relevant but also relaxations by models which are easier to solve. Section 7 describes methods for generating linear relaxations using the DAG representation. (Second order information such as Hessians, second order slopes, quadratic enclosures and convex quadratic relaxations can also be efficiently computed from the DAG representation. Details will be presented elsewhere.) Finally, in Section 8, we will make some statements about implementation issues and performance.
The new representation is promising for two reasons. First, as can be seen in the text, the estimates required in standard branch and bound schemes produce less overestimation when evaluated on the DAG, so the same algorithm will usually need fewer branching steps. In addition, the DAG representation also greatly improves the speed of constraint propagation when compared to traditional methods, often by one or more orders of magnitude, see Vu et al. [29].
Our notation follows the notation suggested in [22]. In particular, inequalities between vectors are interpreted component-wise, I denotes the identity matrix, intervals and boxes are written in bold face, and $\operatorname{rad} \mathbf{x}=$ $\frac{1}{2}(\bar{x}-\underline{\boldsymbol{x}})$ denotes the radius of a box $\mathbf{x}=[\underline{\boldsymbol{x}}, \overline{\boldsymbol{x}}] \in \mathbb{R}^{n}$, here $\mathbb{\mathbb { R }}$ is the set of real, possibly unbounded, intervals.

2. Directed Acyclic Graphs

This section is devoted to the definition of the graphs used to represent the global optimization problems. Although we will use the term directed acyclic graph (DAG) throughout this paper to reference the graph structure of the problem representation, the mathematical structure used is actually a bit more specialized. Here we will describe the basic properties of the graphs.

DEFINITION 2.1. A directed multigraph $\Gamma=(V, E, f)$ consists of a finite set of vertices (nodes) V, a finite set of edges E, and a mapping $f: E \rightarrow$ $V \times V$. For every edge $e \in E$ we define the source of e as $s(e):=\operatorname{Pr}_{1} \circ f(e)$ and the target of e as $t(e):=\operatorname{Pr}_{2} \circ f(e)$, where Pr_{i} denotes the projection on the i th component in a cartesian product. An edge e with $s(e)=t(e)$ is called a loop. Edges $e, e^{\prime} \in E$ are called multiple, if $f(e)=f\left(e^{\prime}\right)$.

For every vertex $v \in V$ we define the set of in-edges

$$
E_{i}(v):=\{e \in E \mid t(e)=v\}
$$

as the set of all edges, which have v as their target, and the set of outedges analogously as the set

$$
E_{0}(v):=\{e \in E \mid s(e)=v\}
$$

of all edges with source v. The indegree of a vertex $v \in V$ is defined as the number of in-edges $\operatorname{indeg}(v)=\left|E_{i}(v)\right|$, and the outdegree of v as the number of out-edges outdeg $(v)=\left|E_{0}(v)\right|$.

A vertex $v \in V$ with $\operatorname{indeg}(v)=0$ is called a (local) source or leaf of the graph, and a vertex $v \in V$ with outdeg $(v)=0$ is called a (local) sink or root of the graph.

The termini "root" and "leaf" come from directed trees, special directed graphs, which are usually used to represent expressions or functions in algorithms. They are not usually used in the context of directed graphs.

DEFINITION 2.2. Let $\Gamma=(V, E, f)$ be a directed multigraph. A directed path from $v \in V$ to $v^{\prime} \in V$ is a sequence $\left\{e_{1}, \ldots, e_{n}\right\}$ of edges with $t\left(e_{i}\right)=$ $s\left(e_{i+1}\right)$ for $i=1, \ldots, n-1, v=s\left(e_{1}\right)$, and $v^{\prime}=t\left(e_{n}\right)$. A directed path is called a closed path or a cycle, if $v=v^{\prime}$. The multigraph Γ is called acyclic if it does not contain a cycle.

An acyclic graph contains at least one source and at least one sink.

DEFINITION 2.3. A directed multigraph with ordered edges (DMGoe) $\Gamma=$ (V, E, f, \leqslant) is a quadruple such that (V, E, f) is a directed multigraph and (E, \leqslant) is a linearly ordered set. As subsets of E, the in-edges $E_{i}(v)$ and out-edges $E_{\circ}(v)$ for every vertex become linearly ordered as well.

We will represent every global optimization problem as computational DMGoe (which we will in short call DAG), where every vertex corresponds to an elementary operation and every edge represents the computational flow. The reasons that we need multigraphs is the fact that some expressions (e.g. x^{x}) can take the same input more than once. The ordering of the edges is primarily needed for non-commutative operators like division. However, we will see in Section 8 that this also has a consequence for certain commutative operations.
For later use, we define the relationship between different vertices.
DEFINITION 2.4. Consider the directed acyclic multigraph $\Gamma=(V, E, f)$. For two nodes $v, v^{\prime} \in V$ we say that v is a parent of v^{\prime} if there exists an edge $e \in E$ with $s(e)=v^{\prime}$ and $t(e)=v$, and then we call v^{\prime} a child of v. Furthermore, v will be named an ancestor of v^{\prime} if there is a directed path from v^{\prime} to v, and v^{\prime} is then a descendant of v.

Now we have all the notions at hand that we will use to represent the optimization problems.

PROPOSITION 2.5. For every directed acyclic multigraph $\Gamma=(V, E, f)$ there is a linear order \preceq on V such that for every vertex v and every ancestor v^{\prime} of v we have $v \preceq v^{\prime}$.

3. Representing Global Optimization Problems

In this section, we will describe how we represent a global optimization problem as a DAG. In Section 3.1 we will talk about simplifying the representation without changing the mathematical model. Later, in Section 3.2, we will show that DAGs can be used to transfer the mathematical problem to various different structures which are needed by specialized optimization and constraint satisfaction algorithms like the ternary structure, semi-separable form, and the like. Also sparsity-issues can be tackled by the reinterpretation method described there.
Consider the factorable optimization problem

$$
\begin{align*}
& \min f(x) \\
& \text { s.t. } F(x) \in F, \tag{1}
\end{align*}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Since it is factorable, the functions f and F can be expressed by sequences of arithmetic expressions and elementary functions. For every arithmetic operation \circ or elementary function involved we introduce a vertex in the graph. Every constant and variable becomes a leaf. If $g \circ h$ is part of one function, we introduce an edge from h to g. The results of f and F become root nodes, of which the result of f is distinguished as the result of the objective function. So with every vertex we associate an arithmetic operation $\left\{+, *, /,{ }^{\wedge}\right\}$ or elementary function $\{1 /, \exp , \log , \sin , \cos , \ldots\}$. For every edge $e \in E$ we call the vertex $t(e)$ the result node and the vertex $s(e)$ the argument node.
When we draw DAG pictures, we write the operation in the interior of the circle representing the node, and mathematically we introduce a map $o p: V \rightarrow \mathbb{O}$ to the set \mathbb{O} of elementary operations. We also introduce a mapping $r g: V \rightarrow \mathbb{R}$, the range map, which defines the feasible range of every vertex. In the pictures representing the graphs in this paper, we will write the result of the range map next to every vertex (and leave it out if $r g(v)=$ $(-\infty, \infty)$).
Consider for example the optimization problem

$$
\begin{align*}
\min & \left(4 x_{1}-x_{2} x_{3}\right)\left(x_{1} x_{2}+x_{3}\right), \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}+x_{2} x_{3}+x_{2}=0, \tag{2}\\
& \quad \exp \left(x_{1} x_{2}+x_{2} x_{3}+x_{2}+\sqrt{x_{3}}\right) \in[-1,1], \\
& x_{1} \geqslant 0, \quad x_{2} \geqslant 0, \quad x_{3} \in[-1,8] .
\end{align*}
$$

This defines the DAG depicted in Figure 1. Here, we have introduced further notation, the coefficient map $c f: E \rightarrow \mathbb{R}$. It multiplies the value of the source of e with $c f(e)$ before feeding it to the operation (or elementary function) $t(e)$. If the coefficient $c f(e)$ is different from 1 , we write it over the edge in the picture. In some sense, the DAG in Figure 1 is optimally small, because it contains every subexpression of the functions f and F only once.

3.1. DAG transformations-simplification

If we start translating a function to a DAG, we introduce for every variable, every constant, and every operation involved a vertex and connect them by the necessary edges. The resulting DAG, however, is usually too big. Every subexpression of f which appears more than once will be represented by more than one node (e.g. v_{1} and v_{2}). Thus, the subexpression will be recomputed many times in the evaluation routines, and during constraint propagation (see Section 5) the algorithms cannot make use of the implicit equation $v_{1}=v_{2}$.

Figure 1. DAG representation of Problem (2).

Of course, variables usually appear more than once, and many algorithms for constraint propagation $[1,3,25]$ use the principle that the variable nodes of identical variables can be identified, hereby reducing the size of the graph. However, this principle can be generalized.

DEFINITION 3.1. Two vertices v_{1} and v_{2} of the DAG $\Gamma=(V, E, f, \leqslant)$ are called simply equivalent if they represent the same operation or elementary function (i.e. $o p\left(v_{1}\right)=o p\left(v_{2}\right)$), and there is a monotone increasing bijective map $g: E_{i}\left(v_{1}\right) \rightarrow E_{i}\left(v_{2}\right)$ with the property $s(e)=s(g(e))$ for all $e \in E_{i}\left(v_{1}\right)$. If there are no distinct simply equivalent vertices in the DAG Γ, we call Γ a reduced DAG.

The existence of the map g means nothing else than the fact that v_{1} and v_{2} represent the same expression. They are the same operation taking the same arguments in the same order. Therefore, any two simply equivalent vertices can be substituted by one of them without changing the functions represented by Γ.

In particular, every DAG Γ can be transformed to an equivalent reduced DAG. We can start identifying the equivalent leaves and continue to identify distinct simply equivalent nodes of Γ until all nodes are pairwise simply inequivalent. The resulting DAG Γ^{\prime} is reduced. Note that this does not mean that the graph does not contain any mathematically equivalent subexpressions. This only implies that no computationally equivalent subexpressions exist. E.g., $x^{2}=x * x$ is mathematically the same but the corresponding DAGs are not simply equivalent.

These simple graph theoretic transformations can be complemented by additional mathematical transformations. These come in three categories:

Constant Evaluation/Propagation: If all children v_{1}, \ldots, v_{k} of a vertex v are leaves representing constants, it can be replaced by a leaf representing the constant which is the result of evaluating the operation $o p(v)$ on the children: $v^{\prime}:=\operatorname{const}\left(o p(v)\left(v_{1}, \ldots, v_{k}\right)\right)$. In a validated computation context, however, you have to make sure that no roundoff errors are introduced in this step.

Mathematical Equivalences: Typically, properties of elementary functions are used to change the DAG layout. E.g., the rule

$$
\log \left(v_{1} \cdots v_{k}\right)=\log \left(v_{1}\right)+\cdots+\log \left(v_{k}\right)
$$

replaces one log-node and one $*$-node by a +- node and a number of $\log _{-}$ nodes (or vice versa).

Substitution:Equations of the form, e.g.,

$$
-v_{0}+v_{1}+\cdots+v_{k}=0
$$

can be used to replace the node v_{0} by $v_{1}+\cdots+v_{k}$.

3.2. DAG interpretation

One strength of the DAG representation is that the mathematical formulation of a problem can be transformed to an equivalent mathematical description which serves the specific needs of some optimization algorithms without having to change the DAG itself; just its interpretation is changed.
Consider again problem (2). The following problem is an equivalent formulation

$$
\begin{aligned}
& \min x_{10} \\
& \text { s.t. } x_{1}^{2}+x_{2}^{2}+x_{7}=0 \\
& \exp \left(x_{7}+\sqrt{x_{3}}\right) \in[-1,1] \\
& x_{2} x_{3}-x_{4}=0 \\
& x_{6}+x_{3}-x_{5}=0 \\
& x_{1} x_{2}-x_{6}=0 \\
& x_{8}+x_{2}-x_{7}=0 \\
& x_{4}+x_{6}-x_{8}=0
\end{aligned}
$$

$$
\begin{align*}
& 4 x_{1}+x_{4}-x_{9}=0 \\
& x_{9} x_{5}-x_{10}=0 \tag{3}
\end{align*}
$$

of much higher dimension but with the property that the objective function is linear and that all constraints are ternary, i.e. involve at most three variables. This is the required problem formulation for a variety of CP algorithms.

Without changing the DAG we can get this representation just by changing the interpretation of the nodes. All intermediate nodes with more than one child and the objective function node are just regarded as variables, and an equation is added which connects the value of the variable with the value of the node as it is computed from its children. No change of the data structure is necessary.

Adding equations and changing the interpretation of intermediate nodes to variable nodes increases the dimension of the problem but also increases the sparsity. By carefully balancing the number of variables this method can be used, e.g., to optimize the sparsity structure of the Hessian of the Lagrangian.

4. Evaluation

There are several types of information which have to be computed for the functions involved in the definition of an optimization problem:

- function values at points,
- function ranges over boxes,
- gradients at points,
- interval gradients over boxes,
- slopes over boxes with fixed center,
- linear enclosures.

To illustrate the techniques, we will use throughout the simple example

$$
\begin{array}{r}
\min \\
\text { s.t. } f\left(x_{1}, x_{2}, x_{3}\right)=\left(4 x_{1}-x_{2} x_{3}\right)\left(x_{1} x_{2}+x_{3}\right) \tag{4}\\
\text { 1,2], } \quad x_{2} \in[3,4], \quad x_{3} \in[3,4]
\end{array}
$$

whose DAG representation can be found in Figure 2.

4.1. FORWARD EVALUATION SCHEME

The standard method of evaluating expressions works by feeding values to the leaves and propagating these values through the DAG in the direction of the edges. This is the reason why this evaluation method is called forward mode.

Figure 2. Directed acyclic graph representation of the Problem (4).

Figure 3. Function evaluation for (4).

Computing the function value $f(2,4,4)$ proceeds as depicted in Figure 3. Here, we have written the results for all nodes to the left of the circle representing them.

In an analogous way we can compute a range estimate of f on the initial box $[1,2] \times[3,4] \times[3,4]$. Instead of using real numbers we plug intervals into the leaves and use interval arithmetic instead of real arithmetic and interval extensions of elementary functions instead of their real versions. Again, we show the process in Figure 4 by placing the ranges computed for the nodes next to them.

Figure 4. Interval evaluation for (4).

4.2. backward evaluation scheme

Calculating derivatives or slopes could be done by the forward mode as well, but then we would need to propagate vectors through the graph, and at every node we would have to perform at least one full vector addition, so the effort to calculate a gradient would be the number of variables times the effort of calculating a function value.
However, it is well known from automatic differentiation that the number of operations can be reduced to be of the order of one function evaluation by reversing the direction of evaluation.
First, we consider the well known fact that the chain rule

$$
\frac{\partial}{\partial x_{i}}(f \circ g)(x)=\sum_{k} \frac{\partial}{\partial x_{k}} f(g(x)) \cdot \frac{\partial}{\partial x_{i}} g_{k}(x)
$$

holds $\left(f: \mathbb{R}^{m} \rightarrow \mathbb{R}, g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right)$. Hence, in the first step, during the computation of the function value, we construct a map $d m: E \rightarrow \mathbb{R}$ which associates with each edge the value of the partial derivative of the result node with respect to the corresponding argument node. Then we start at the root nodes, initializing them with 1 , and proceed towards the leaves in the opposite direction of the graph edges, multiplying by $\operatorname{dm}(e)$ as we traverse e. When we reach the leaf representing variable x_{i}, we add the resulting product to the i th component of the gradient vector. The gradient at $(2,4,4)$ is calculated as in Figure 5. Here the values of $d m$ are written next to the edges, and the results are next to the nodes. The components of the gradient can be found next to the leaves. We have $\nabla f(2,4,4)=(16,-64,-56)^{T}$.

Figure 5. Gradient evaluation for (4).

Figure 6. Interval gradient evaluation for (4).

There is hardly any difference in computing the interval gradient of f over a given box \boldsymbol{x}. Since the chain rule looks exactly the same as for real gradients, the evaluation scheme is the same, as well. We only have to replace real arithmetic by interval arithmetic and elementary functions by their interval counterparts (inclusion functions), and the map idm: $E \rightarrow \mathbb{R}$ becomes interval valued. In Figure 6 we compute $\nabla f(\boldsymbol{x})$ for $\boldsymbol{x}=[1,2] \times$ $[3,4] \times[3,4]$.

Figure 7. Slopes for elementary operations.

A very useful tool for calculating enclosures of the range of f over a box is a slope. This is a linear approximation of the form

$$
\begin{equation*}
f(x)=f(z)+f[z, x](x-z), \tag{5}
\end{equation*}
$$

see [18, 26]. In one dimension the slope is unique, in case it is continuous, and we have then

$$
f[z, x]= \begin{cases}\frac{f(x)-f(z)}{x-z} & x \neq z . \\ f^{\prime}(z) & x=z .\end{cases}
$$

In higher dimensions the slope is non-unique (see, e.g., Section 8), but it exists always if f is locally Lipschitz.
Using (5) we can find an enclosure of the range of f over the box \boldsymbol{x} by

$$
f(x) \in f(z)+f[z, \boldsymbol{x}](\boldsymbol{x}-z), \quad \text { for all } x \in \boldsymbol{x} .
$$

This is a centered form and has the quadratic approximation property (cf. [21]). The most general slope definition is the one with interval center

$$
f(x) \subseteq f(z)+f[z, x](x-z),
$$

and the special case $\boldsymbol{x}=z$ gives $f[z, z]=f^{\prime}(z)$ the interval derivative. Slopes can be calculated automatically like derivatives, and a chain rule holds:

$$
(f \circ g)[z, x]=f[g(z), g(x)] \cdot g[z, x] .
$$

As it was noticed by Bliek [6] for computational trees, we can use the backward mode to compute the slopes on the DAG. The arithmetic operations and the elementary functions look like those depicted in Figure 7. There z_{f} denotes the base point about which f is approximated, and s_{f} the slope of f.

Figure 8. Slope evaluation for Problem (4).
We see from the pictures that for the elementary functions, the slopes $\varphi[z, \boldsymbol{x}]$ have to be computed. It was shown by Kolev [18] that for convex and concave functions the optimal slope is given by

$$
\varphi[z, \boldsymbol{x}]=\square\{(\varphi[z, \underline{x}], \varphi[z, \bar{x}]\}
$$

where $\square S$ denotes the smallest interval containing the set S. For other functions the case is more difficult, but we always have

$$
\varphi[z, \boldsymbol{x}] \subseteq \varphi^{\prime}(\boldsymbol{x})
$$

To compute general slopes, we first calculate the values of the centers in forward mode, which is an ordinary (interval) function evaluation. Then we change the map dm to $\operatorname{slm}: E \rightarrow \mathbb{R}$ storing the slope of the result node with respect to the argument node during the forward pass, and then we use interval arithmetic to compute the slope in backward mode. This can be seen in Figure 8, where we separate the centers and the slopes by a comma at each node.

The result $f[z, \boldsymbol{x}]=([-8,24],[-64,-34],[-56,-32])$, where we chose $z=$ $(2,4,4)$, is clearly slimmer than the interval derivative $f^{\prime}(\boldsymbol{x})=([-24,45]$, $[-72,-19],[-60,-19])$ as it was expected, since slopes provide better enclosures than interval derivatives.

5. Constraint Propagation on DAGs

As already mentioned, one strength of the DAG concept for global optimization is that knowledge of feasible points and the constraints can be used to narrow the possible ranges of the variables, cf. [3, 25, 28].

If we have a feasible point $x_{\text {best }}$ with function value $f_{\text {best }}$ we can introduce the new constraint $f(x) \leq f_{\text {best }}$ without changing the solution of the optimization problem (1). Then the ranges of the nodes can be propagated through the DAG, refining the range map $r g: V \rightarrow \mathbb{R}$ in every step of the constraint propagation (i.e. $r g^{(n+1)}(v) \subseteq r g^{(n)}(v)$ for all v, if $r g^{(n)}$ denotes the range map at step n). We stop when the reductions become too small.
Constraint propagation has two directions, forward and backward. Assume that we are given values for $\boldsymbol{f}, \boldsymbol{g}$, and \boldsymbol{h} in an nth step and improved bounds for some of those quantities in an $(n+1)$ st step. If we want to find improved values for the remaining quantities, for the elementary functions the necessary propagation steps are as follows.

$$
\boldsymbol{h}=\lambda \boldsymbol{f}+\mu \boldsymbol{g}:
$$

forward propagation

$$
\boldsymbol{h}^{(n+1)}:=\left(\lambda \boldsymbol{f}^{(n+1)}+\mu \boldsymbol{g}^{(n+1)}\right) \cap \boldsymbol{h}^{(n)},
$$

backward propagation

$$
\begin{aligned}
& \boldsymbol{f}^{(n+1)}:=\frac{1}{\lambda}\left(\boldsymbol{h}^{(n+1)}-\mu \boldsymbol{g}^{(n)}\right) \cap \boldsymbol{f}^{(n)}, \\
& \boldsymbol{g}^{(n+1)}:=\frac{1}{\mu}\left(\boldsymbol{h}^{(n+1)}-\lambda \boldsymbol{f}^{(n)}\right) \cap \boldsymbol{g}^{(n)} . \\
& \boldsymbol{h}=\boldsymbol{f} \boldsymbol{g}:
\end{aligned}
$$

forward propagation

$$
\boldsymbol{h}^{(n+1)}:=\left(\mathbf{f}^{(n+1)} \boldsymbol{g}^{(n+1)}\right) \cap \boldsymbol{h}^{(n)},
$$

backward propagation

$$
\begin{aligned}
& \boldsymbol{f}^{(n+1)}:=\left(\boldsymbol{h}^{(n+1)} / \boldsymbol{g}^{(n)}\right) \cap \boldsymbol{f}^{(n)}, \\
& \boldsymbol{g}^{(n+1)}:=\left(\boldsymbol{h}^{(n+1)} / \boldsymbol{f}^{(n)}\right) \cap \boldsymbol{g}^{(n)} . \\
& \boldsymbol{h}=\boldsymbol{f} / \boldsymbol{g}:
\end{aligned}
$$

forward propagation

$$
\boldsymbol{h}^{(n+1)}:=\left(\boldsymbol{f}^{(n+1)} / \boldsymbol{g}^{(n+1)}\right) \cap \boldsymbol{h}^{(n)},
$$

Figure 9. Constraint propagation for Problem (4) utilizing $f(x) \leq-96$.
backward propagation

$$
\begin{aligned}
& \boldsymbol{f}^{(n+1)}:=\left(\boldsymbol{h}^{(n+1)} / \boldsymbol{g}^{(n)}\right) \cap \boldsymbol{f}^{(n)}, \\
& \boldsymbol{g}^{(n+1)}:=\left(\boldsymbol{f}^{(n)} / \boldsymbol{h}^{(n+1)}\right) \cap \boldsymbol{g}^{(n)} . \\
& \boldsymbol{h}=\varphi(\boldsymbol{f}):
\end{aligned}
$$

forward propagation

$$
\boldsymbol{h}^{(n+1)}:=\varphi\left(\boldsymbol{f}^{(n+1)}\right) \cap \boldsymbol{h}^{(n)},
$$

backward propagation

$$
\boldsymbol{f}^{(n+1)}:=\varphi^{-1}\left(\boldsymbol{h}^{(n+1)}\right) \cap \boldsymbol{f}^{(n)} .
$$

Note that for the DAG representation we refine the range map for all nodes not only for the leaf nodes. This is an important step because that will help us in Section 6 to improve the ranges of interval derivatives and slopes.
In Figure 9, we show the result of constraint propagation to our example, if we use the function value -96 of the feasible point $(2,4,4)$ to introduce the constraint $f(x) \leqslant-96$. Note that the ranges of the variable nodes do not change, so the traditional method of calculating interval related results is not improved. The new ranges are printed in the picture in bold face.

Figure 10. Interval gradient evaluation for Problem (4) after constraint propagation.

Figure 11. Slope evaluation for Problem (4) after constraint propagation.

6. Combining CP and Evaluation

In this section we will use the range map $r g: V \rightarrow \mathbb{R}$ improved by constraint propagation to recompute the interval derivative and the slope. This improves the ranges, in some tested examples the improvement was several orders of magnitude.
Figure 10 contains the result of the interval gradient computation after constraint propagation, and in Figure 11 we recompute the slope.

Both results are clearly an improvement over what we had before:

$$
\begin{aligned}
& f^{\prime}(\boldsymbol{x}) \subseteq\left(\begin{array}{c}
{[-16,24]} \\
{[-72,-32]} \\
{[-60,-32]}
\end{array}\right) \subset\left(\begin{array}{c}
{[-24,45]} \\
{[-72,-19]} \\
{[-60,-19]}
\end{array}\right), \\
& f[z, \boldsymbol{x}] \subseteq\left(\begin{array}{c}
{[0,24]} \\
{[-64,-48]} \\
{[-56,-32]}
\end{array}\right) \subset\left(\begin{array}{c}
{[-8,24]} \\
{[-64,-34]} \\
{[-56,-32]}
\end{array}\right) .
\end{aligned}
$$

7. Slopes and Linear Enclosures

The linear approximation (5) of a function f provided by slopes can be used to construct an enclosure of f by linear functions. This in turn can be used to construct a linear relaxation of the original problem.

PROPOSITION 7.1. Let $\boldsymbol{s}:=f[z, x]$ be a slope of the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$. If $z \in x$ then the function

$$
\underline{f}(x)=\underline{f}+\sum_{i=1}^{n} \bar{s}_{i}\left(\underline{x}_{i}-z_{i}\right)+\frac{s_{i}\left(\bar{x}_{i}-z_{i}\right)-\bar{s}_{i}\left(\underline{x}_{i}-z_{i}\right)}{\bar{x}_{i}-\underline{x}_{i}}\left(x_{i}-\underline{x}_{i}\right)
$$

is a linear function which underestimates f on \boldsymbol{x}, i.e.,

$$
\underline{f}(x) \leqslant f(x) \quad \text { for all } \quad x \in \boldsymbol{x},
$$

and the function

$$
\bar{f}(x)=\bar{f}+\sum_{i=1}^{n} \underline{s}_{i}\left(\underline{x}_{i}-z_{i}\right)+\frac{\bar{s}_{i}\left(\bar{x}_{i}-z_{i}\right)-\underline{s}_{i}\left(\underline{x}_{i}-z_{i}\right)}{\bar{x}_{i}-\underline{x}_{i}}\left(x_{i}-\underline{x}_{i}\right)
$$

is a linear overestimating function for f over \boldsymbol{x}, where $f(z) \in[\underline{f}, \bar{f}]$.
Proof. Everything can be reduced to a series of one dimensional problems, and for those the proof is easy.

For problem (1) we have to consider the constraints componentwise. For every component $F_{j}(x) \in \boldsymbol{F}_{j}$ the constraints $\underline{F}_{j}(x) \leqslant \bar{F}_{j}$ and $\bar{F}_{j}(x) \geqslant \underline{F}_{j}$ are valid linear constraints; here $\underline{F}_{j}(x)$ and $\bar{F}_{j}(x)$ are defined analogous to $f(x)$ and $\bar{f}(x)$, respectively. They can be added as redundant constraints to the problem without affecting the solution.

Alternatively, one could also compute the underestimating function \underline{f} for the objective function f. Then the linear program

$$
\begin{array}{ll}
\min & f(x) \\
\text { s.t. } & \bar{F}(x) \leqslant \bar{F} \\
& \bar{F}(x) \geqslant \underline{F} \\
& x \in \boldsymbol{x},
\end{array}
$$

where $\underline{F}(x)$ denotes the vector of all underestimating functions \underline{F}_{j} for all components F_{j}, is a linear relaxation of (1).

For the example given by (2), we have already computed the slope for the center $(2,4,4)$ in Section 6. Calculating a linear underestimating function for the objective, as above, leads to the constraint

$$
-24\left(x_{1}-2\right)-48\left(x_{2}-4\right)-32\left(x_{3}-4\right) \leqslant 0 .
$$

Performing constraint propagation again on the problem with this additional redundant constraint leads to the domain reduction $x_{2,3} \in[3.4,4]$. With previously known techniques but without (expensive) higher order consistency, such a reduction would have required a split of the box.

Alternatively, it is possible to construct linear enclosures of the form

$$
f(x) \in f+s(x-z), \quad \text { for } x \in \boldsymbol{x},
$$

with thin slope $s \in \mathbb{R}^{n}$ and thick constant term. This approach corresponds to first order Taylor arithmetic as, e.g., presented in [4, 5, 23]. Since the linear Taylor expressions also obey a chain rule similar to slopes, these enclosures can be computed by backward evaluation with little effort quite similar to "thick" slopes. Kolev [19] showed that propagating them in forward mode leads to better enclosures; however, the effort for computing in forward mode is n times higher.

8. Implementation Issues

8.1. multiplication and division

As it has been mentioned earlier, slopes in dimensions greater than one are usually not unique. Two elementary operations, multiplication and division, therefore provide us with a choice for implementation.
All possible slopes for multiplication are

$$
x_{1} x_{2} \in z_{1} z_{2}+\binom{\lambda \boldsymbol{x}_{2}+(1-\lambda) z_{2}}{\lambda z_{1}+(1-\lambda) \boldsymbol{x}_{1}} \cdot\binom{\boldsymbol{x}_{1}-z_{1}}{\boldsymbol{x}_{2}-z_{2}}
$$

for some $\lambda \in \mathbb{R}$ (possibly dependent on the arguments), and for division they are

$$
\frac{x_{1}}{x_{2}} \in \frac{z_{1}}{z_{2}}+\left(\begin{array}{c}
\frac{\lambda}{z_{2}}+\frac{1-\lambda}{\boldsymbol{x}_{2}} \\
-\frac{\lambda}{z_{2}} \boldsymbol{x}_{2} \\
x_{2}
\end{array} \frac{1-\lambda}{\boldsymbol{x}_{2}} \frac{z_{1}}{z_{2}}\right) \cdot\binom{\boldsymbol{x}_{1}-z_{1}}{\boldsymbol{x}_{2}-z_{2}} .
$$

The best choice for division is $\lambda=1$, because we can use the term $\boldsymbol{x}_{1} / \boldsymbol{x}_{2}$ after constraint propagation. It is the range enclosure of the division node, for which the slope is being computed, and in addition there is no subdistributivity problem during slope backward evaluation. Hence the proper choice for division is

$$
s_{/}=\frac{1}{z_{2}}\binom{1}{-\frac{x_{1}}{x_{2}}} .
$$

For multiplication we can choose a λ that minimizes the width of the resulting range. A short computation shows that the minimal width is obtained by

$$
\lambda= \begin{cases}0 & \text { if } \operatorname{rad}\left(\boldsymbol{x}_{1}\right)\left|z_{2}\right| \leqslant \operatorname{rad}\left(\boldsymbol{x}_{2}\right)\left|z_{1}\right|, \\ 1 & \text { otherwise } .\end{cases}
$$

To avoid a case distinction in computing products, it is advisible to find a good heuristics. Considering the Horner scheme for polynomial evaluation gives the following hint: Sort the product by ascending complexity of the factors (i.e., roughly, by increasing overestimation). Then set $\lambda=0$, hence choose the slope

$$
s_{*}=\binom{z_{2}}{\boldsymbol{x}_{1}} .
$$

8.2. ROUNDING ERRORS

Since enclosures of the form

$$
f(x) \in f(z)+f[z, \boldsymbol{x}](\boldsymbol{x}-z),
$$

are computed numerically, the direct evaluation of the term $f(z)$ by floating point arithmetic generally does not produce guaranteed enclosures. Hence, it is important to take care for the rounding errors, in order to avoid the occasional loss of solutions in a branch and bound scheme. There are two possible approaches.

The first possibility is to change all calculations involving the center into interval operations, providing a linear interval enclosure

$$
f(x) \in f(z)+f[z, x](x-z)
$$

with generally interval center z. This needs slopes of the form $f[z, x]$ with $z \subseteq x$ for all elementary operations.

The second possibility is to allow approximate point evaluations at the centers and elementary slopes with point centers $f[z, x]$, but to take care of the rounding errors in computing $f(z)$ during propagation, by adapting the chain rule appropriately. If

$$
\begin{aligned}
& f(x) \in \boldsymbol{f}+f\left[z_{f}, \boldsymbol{x}\right]\left(\boldsymbol{x}-z_{f}\right), \quad f\left(z_{f}\right) \in \boldsymbol{f}, \boldsymbol{x} \in \boldsymbol{x} \\
& g(y) \in \boldsymbol{g}+g\left[z_{g}, \boldsymbol{y}\right]\left(\boldsymbol{y}-z_{g}\right), \quad g\left(z_{g}\right) \in \boldsymbol{g}, y \in \boldsymbol{y},
\end{aligned}
$$

then, for arbitrary $z_{g} \approx f\left(z_{f}\right)$,

$$
\begin{aligned}
g(f(x)) & \in \boldsymbol{g}+g\left[z_{g}, f(\boldsymbol{x})\right]\left(\boldsymbol{f}+f\left[z_{f}, \boldsymbol{x}\right]\left(\boldsymbol{x}-z_{f}\right)-z_{g}\right) \\
& \subseteq \boldsymbol{g}+g\left[z_{g}, f(\boldsymbol{x})\right]\left(\boldsymbol{f}-z_{g}\right)+g\left[z_{g}, f(\boldsymbol{x})\right] f\left[z_{f}, \boldsymbol{x}\right]\left(\boldsymbol{x}-z_{f}\right) .
\end{aligned}
$$

The remaining decision is what to compute in forward, and what in backward mode. Taking a third component provides the important hint:

$$
h(t) \in \boldsymbol{h}+h\left[z_{h}, \boldsymbol{t}\right]\left(\boldsymbol{t}-z_{h}\right),
$$

and we find

$$
\begin{aligned}
h(g(f(x))) \in \boldsymbol{h} & +h\left[z_{h}, g(f(\boldsymbol{x}))\right]\left(\boldsymbol{g}-z_{h}+g\left[z_{g}, f(\boldsymbol{x})\right]\left(\boldsymbol{f}-z_{g}\right)\right) \\
& +h\left[z_{h}, g(f(\boldsymbol{x}))\right] g\left[z_{g}, f(\boldsymbol{x})\right] f\left[z_{f}, \boldsymbol{x}\right]\left(\boldsymbol{x}-z_{f}\right)
\end{aligned}
$$

if the center term is computed in forward mode. If it is computed backward, the term is

$$
h\left[z_{h}, g(f(\boldsymbol{x}))\right]\left(g(f(\boldsymbol{x}))-z_{h}\right)+h\left[z_{h}, g(f(\boldsymbol{x}))\right] g\left[z_{g}, f(\boldsymbol{x})\right]\left(\boldsymbol{f}-z_{g}\right) .
$$

Because of subdistributivity, this is a worse or identical enclosure of the center. Therefore, computing the center in forward mode gives generally a tighter result.

References

1. ILOG Solver 5.1, 2001.
2. Androulakis, I.P., Maranas, C.D. and Floudas, C.A. (1995), α BB: a global optimization method for general constrained nonconvex problems, J. Global Optim., 7, 337-363.
3. Benhamou, F. and Older, W. (1997), Applying interval arithmetic to real, integer, and boolean constraints, J. Logic Program.
4. Berz, M. (1997), COSY INFINITY version 8 reference manual. Technical report, National Superconducting Cyclotron Lab., Michigan State University, East Lansing, Mich., MSUCL-1008.
5. Berz, M. and Makino, K. (1998), Verified integration of ODEs and flows using differential algebraic methods on high-order Taylor models, Reliable Comput., 4, 361-369.
6. Bliel, C. (1992), Computer Methods for Design Automation. PhD thesis, Department of Ocean Engineering, Massachusetts Institute of Technology.
7. Bliek, C., Spellucci, P., Vicente, L.N., Neumaier, A., Granvilliers, L., Monfroy, E., Benhamouand, F., Huens, E., Van Hentenryck, P., Sam-Haroud, D. and Faltings, B. (2001), Algorithms for Solving Nonlinear Constrained and Optimization Problems: The State of the Art. Report of the European Community funded project COCONUT, Mathematisches Institut der Universitat Wien, http://www.mat.univie.ac.at/ ~neum/glopt/coconut/StArt.html.
8. Brooke, A., Kendrick, D. and Meeraus, A. (1992), GAMS - A User's Guide (Release 2.25). Boyd \& Eraser Publishing Company, Danvers, Massachusetts.
9. Chekuri, C., Johnson, R., Motwani, R., Natarajan, B., Ramakrishna Rau, B. and Schlansker, M. S. (1996), Profile-driven instruction level parallel scheduling with application to super blocks. in International Symposium on Microarchitecture, pp. 58-67.
10. Dallwig, S., Neumaier, A. and Schichl, H. (1997), GLOPT - A program for constrained global optimization. in Bomze, I.M., Csendes, T., Horst, R. and Pardalos, P.M. (eds.), Developments in Global Optimization, Kluwer, Dordrecht, pp. 19-36.
11. Dixon, L.C.W. and Szegö, G.P. (1975), Towards Global Optimization, Elsevier, New York.
12. Floudas, C.A. (1999), Deterministic Global Optimization: Theory, Algorithms and Applications, Kluwer, Dordrecht.
13. Fourer, R., Gay, D.M. and Kernighan, B.W. (2003), AMPL - A Mathematical Programming Language, Thomson, second ed.
14. Griewank, A. and Corliss, G.F. (1991), Automatic Differentiation of Algorithms, SIAM Publications, Philadelphia.
15. Jaffar, J. and Maher, M.J. (1994), Constraint logic programming: A survey, J. of Logic Program., 19/20, 503-581.
16. Kearfott, R.B. (1991), Decomposition of arithmetic expressions to improve the behavior of interval iteration for nonlinear systems, Computing, 47, 169-191.
17. Kearfott, R.B. (1996), Rigorous Global Search: Continuous Problems, Kluwer, Dordrecht.
18. Kolev, L.V. (1997), Use of interval slopes for the irrational part of factorable functions, Reliable Comput, 3, 83-93.
19. Kolev, L.V. (2002), An improved interval linearization for solving non-linear problems, Manuscript.
20. McCormick, G.P. (1976), Computability of global solutions to factorable nonconvex programs: Part I - Convex underestimating problems, Math. Program., 10, 147-175.
21. Neumaier, A. (1990), Interval Methods for Systems of Equations, Cambridge University Press, Cambridge.
22. Neumaier, A. (2001), Introduction to Numerical Analysis, Cambridge University Press, Cambridge.
23. Neumaier, A. (2002), Taylor forms - use and limits, Reliable Comput., 9, 43-79.
24. Sahinidis, N.V. (1996), BARON: A general purpose global optimization software package, J. Global Optim., 8, 201-205.
25. Sam-Haroud, D. and Faltings, B. (1996), Consistency techniques for continuous constraints, Constraints, 1(1\&2), 85-118.
26. Shen, Z. and Neumaier, A. (1990), The Krawczyk operator and Kantorovich's theorem, J. Math. Anal. Appl, 149, 437-443.
27. Tawarmalani, M. and Sahinidis, N.V. (2002), Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Kluwer, Dordrecht.
28. Van Hentenryck, P., Michel, L. and Deville, Y. (1997), Numerica - A Modeling Language for Global Optimization, MIT Press, Cambridge, MA.
29. Vu, X.-H., Schichl, H. and Sam-Haroud, D. (2004), Using directed acyclic graphs to coordinate propagation and search for numerical constraint satisfaction problems. in Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004). Florida, USA.
